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The branch of mechanics which considers anisotropic plates is highly important at present since anisotropic matters are widely used in contemporary engineering. Therefore the analysis of plate and shell theory is of current importance [1, 3].
 According to the investigations presented in the cited literature [2, 3] it is obvious that the classical theory gives the correct results only in a limited field of application. Thus, the qualifying theories are highly developing and widely applying at present time.  

In this paper we consider a thin orthotropic plate made from three homogeneous laminas. To analyze the problem the qualifying iterative theory of anisotropic plates described in [3] is used. This approach is based on the idea to obtain correction terms which describe the in-plane shear effect dependent on the mechanical matter characteristics.    
The mentioned above theory applied in the context of the following hypotheses [3, 11]:
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, which are obtained taking into consideration hypotheses of unstrained normal for a whole plate stack;

c) obtaining strains, we do not take into consideration normal stress effect 
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The described problem comes to finding the shear  
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 displacements in 
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 plane. These functions are found, solving the system of differential equations according to the classical laminated plates and shells theory [1, 2,  3]:
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where the linear operators are expressed as
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Rigidities, according to [3] are defined as 
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where 2
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 are the thicknesses of the middle, top and bottom layer, respectively; 
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 are predetermined layer elasticity coefficients; 
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 is the index of the ply (
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 for the middle layer, for the top and bottom plies indexes are presented as ‘ and “); 
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 is a stretching – compression stiffness; 
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 is a bending stiffness. 
Presented paper deals with the described above simply supported plate (
[image: image22.wmf]b
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) subjected to the loading expressed as   
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taking into consideration variable in time damping coefficient.
In terms of iterative theory, according to [3], for the described problem we obtain the next system of differential equations with respect to unknown functions 
[image: image24.wmf])
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The sandwich plate is a symmetrical orthotropic one, therefore, we suppose that
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Analysis of the problem comes to the solution of the following equation, in terms of the classical theory:
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and to another differential equation, in terms of iterative theory:  
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Solution of the equations is conducted using the hybrid (Wentzel-Kramer-Brillouin) WKB-Galerkin method which enables to obtain especially good results in approximate solution of differential equation which contains a parameter near the highest order derivative and has already shown its advantages in different branches of mechanics. 

Hybrid methods have proved to be useful in a wide variety of applications such as structural mechanics problems, applications to slender-body, thermal and structures problems [ 4 – 10, 13, 14 ].

The hybrid WKB-Galerkin method was successfully used in solution of mechanical boundary problems which contained a linear differential equation with variable coefficients and parameter near the highest order derivative. The obtained solution had a pinpoint accuracy and was used in a wide variety of applications. Therefore, the hybrid WKB-Galerkin method, applied to the described differential equations, will give us an opportunity to obtain the approximate solution as an asymptotic one.
The results obtained for the classical and iterative theory and compared, varying mechanical matter characteristics and magnitude of the damping coefficient function.   
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